Package index
-
nHyp(<SansSouci>)nObs(<SansSouci>)label(<SansSouci>)print(<SansSouci>)pValues(<SansSouci>)foldChanges(<SansSouci>)thresholds(<SansSouci>) - Basic methods for class
SansSouci
-
SansSouci() - Create an object of class 'SansSouci'
-
SansSouciDyadic() - Create an object of class 'SansSouciStruct' with a dyadic structure
-
SansSouciSim() - Create an object of class 'SansSouci' from simulations
-
nHyp(<SansSouciStruct>)nLeaves(<SansSouciStruct>)label(<SansSouciStruct>)pValues(<SansSouciStruct>) - Basic methods for class
SansSouciStruct
-
SansSouciStruct() - Create an object of class 'SansSouciStruct'
-
V.star() - Post hoc bound on the number of false positives
-
nHyp()nObs()label()pValues()foldChanges()thresholds()nLeaves() - Generic functions for S3 class SansSouci
-
bootstrap_permutation() - Mass-univariate bootstrap-based inference for contrasts in a linear model
-
calibrate()calibrate0() - Perform JER calibration from randomization p-values
-
calibration_bootstap() - Calibration of post hoc bound using bootstrap permutations
-
confCurveFromFam() - Confidence bounds on the true/false positives among most significant items
-
curve.V.star.forest.naive()curve.V.star.forest.fast() - Compute a curve of post hoc bounds based on a reference family with forest structure
-
curveMaxFP() - Upper bound for the number of false discoveries among most significant items
-
curveMaxFP_BNR2014()curveMaxFP_Mein2006() - Upper bound for the number of false discoveries among most significant items
-
delete.gaps() - Delete the gaps induced by pruning
-
dyadic.from.leaf_list()dyadic.from.window.size()dyadic.from.height() - Create a complete dyadic tree structure
-
fit(<SansSouci>) - Fit SansSouci object
-
fit(<SansSouciStruct>) - Fit SansSouciStruct object
-
forest.completion() - Complete a forest structure
-
formatBounds() - Table of bounds
-
gauss_bloc() - Generate a block of deterministic signal of Gaussian shape
-
gaussianSamples() - Simulate equi-correlated data
-
gaussianTestStatistics() - Simulate Gaussian test statistics
-
gen.mu.leaves() - Generate the signal in the leaves of the tree
-
gen.mu.noleaves() - Generate an unstructured signal
-
gen.p.values() - Generate one-sided p-values associated to a given signal with equi-correlated noise
-
get_perm() - Get permutation statistics and p-values
-
get_pivotal_stat() - Get a vector of pivotal statistics associated to permutation p-values and to a reference family
-
lm_test() - Mass-univariate inference for contrasts in a linear model
-
maxFDP() - Upper bound for the false discovery proportion in a selection
-
maxFP() - Upper bound for the number of false discoveries in a selection
-
minTDP() - Lower bound for the true discovery proportion in a selection
-
minTP() - Lower bound for the number of true discoveries in a selection
-
mini_batch_rowTestFUN() - Mini batch version of a rowTestFUN function.
-
nb.elements() - Number of unique regions in a reference family with forest structure
-
plot(<SansSouci>) - Plot confidence bound on the true/false positives among most significant items
-
plotConfCurve() - Plot confidence bound
-
posthocBySimes() - post hoc bound obtained from Simes' inequality
-
predict(<SansSouci>) - Post hoc confidence bounds on the true/false positives
-
pruning() - Prune a forest structure to speed up computations
-
t_inv_linear()t_linear()t_inv_beta()t_beta() - Reference families
-
rowBinomialTests() - Binomial proportion tests for each row of a matrix
-
rowPearsonCorrelationTests() - Pearson's correlation test for rows of a matrix
-
rowWelchTests() - Welch T-tests for rows of a matrix
-
rowWilcoxonTests() - Wilcoxon rank sum tests for each row of a matrix
-
rowZTests() - Z tests for rows of a matrix
-
row_lm_test() - Mass-univariate bootstrap-based inference for contrasts in a linear model
-
testByRandomization() - Randomization-based testing
-
volcanoPlot() - Volcano plot
-
volcanoPlot(<numeric>) - Volcano plot
-
zeta.HB()zeta.kBonf()zeta.trivial()zeta.DKWM() - Estimate the number of true null hypotheses among a set of p-values
-
zetas.tree() - Estimate of the proportion of true nulls in each node of a tree