Skip to contents

All functions

nHyp(<SansSouci>) nObs(<SansSouci>) label(<SansSouci>) print(<SansSouci>) pValues(<SansSouci>) foldChanges(<SansSouci>) thresholds(<SansSouci>)
Basic methods for class SansSouci
SansSouci()
Create an object of class 'SansSouci'
SansSouciDyadic()
Create an object of class 'SansSouciStruct' with a dyadic structure
SansSouciSim()
Create an object of class 'SansSouci' from simulations
nHyp(<SansSouciStruct>) nLeaves(<SansSouciStruct>) label(<SansSouciStruct>) pValues(<SansSouciStruct>)
Basic methods for class SansSouciStruct
SansSouciStruct()
Create an object of class 'SansSouciStruct'
V.star()
Post hoc bound on the number of false positives
nHyp() nObs() label() pValues() foldChanges() thresholds() nLeaves()
Generic functions for S3 class SansSouci
calibrate() calibrate0()
Perform JER calibration from randomization p-values
confCurveFromFam()
Confidence bounds on the true/false positives among most significant items
curve.V.star.forest.naive() curve.V.star.forest.fast()
Compute a curve of post hoc bounds based on a reference family with forest structure
curveMaxFP()
Upper bound for the number of false discoveries among most significant items
curveMaxFP_BNR2014() curveMaxFP_Mein2006()
Upper bound for the number of false discoveries among most significant items
delete.gaps()
Delete the gaps induced by pruning
dyadic.from.leaf_list() dyadic.from.window.size() dyadic.from.height()
Create a complete dyadic tree structure
fit(<SansSouci>)
Fit SansSouci object
fit(<SansSouciStruct>)
Fit SansSouciStruct object
forest.completion()
Complete a forest structure
formatBounds()
Table of bounds
gauss_bloc()
Generate a block of deterministic signal of Gaussian shape
gaussianSamples()
Simulate equi-correlated data
gaussianTestStatistics()
Simulate Gaussian test statistics
gen.mu.leaves()
Generate the signal in the leaves of the tree
gen.mu.noleaves()
Generate an unstructured signal
gen.p.values()
Generate one-sided p-values associated to a given signal with equi-correlated noise
get_perm()
Get permutation statistics and p-values
get_pivotal_stat()
Get a vector of pivotal statistics associated to permutation p-values and to a reference family
maxFDP()
Upper bound for the false discovery proportion in a selection
maxFP()
Upper bound for the number of false discoveries in a selection
minTDP()
Lower bound for the true discovery proportion in a selection
minTP()
Lower bound for the number of true discoveries in a selection
nb.elements()
Number of unique regions in a reference family with forest structure
plot(<SansSouci>)
Plot confidence bound on the true/false positives among most significant items
plotConfCurve()
Plot confidence bound
posthocBySimes0Rcpp() posthocBySimes()
post hoc bound obtained from Simes' inequality
predict(<SansSouci>)
Post hoc confidence bounds on the true/false positives
pruning()
Prune a forest structure to speed up computations
t_inv_linear() t_linear() t_inv_beta() t_beta()
Reference families
rowBinomialTests()
Binomial proportion tests for each row of a matrix
rowPearsonCorrelationTests()
Pearson's correlation test for rows of a matrix
rowWelchTests()
Welch T-tests for rows of a matrix
rowWilcoxonTests()
Wilcoxon rank sum tests for each row of a matrix
rowZTests()
Z tests for rows of a matrix
testByRandomization()
Randomization-based testing
volcanoPlot()
Volcano plot
volcanoPlot(<numeric>)
Volcano plot
zeta.HB() zeta.trivial() zeta.DKWM()
Estimate the number of true null hypotheses among a set of p-values
zetas.tree()
Estimate of the proportion of true nulls in each node of a tree