Function reference
-
nHyp(<SansSouci>)
nObs(<SansSouci>)
label(<SansSouci>)
print(<SansSouci>)
pValues(<SansSouci>)
foldChanges(<SansSouci>)
thresholds(<SansSouci>)
- Basic methods for class
SansSouci
-
SansSouci()
- Create an object of class 'SansSouci'
-
SansSouciDyadic()
- Create an object of class 'SansSouciStruct' with a dyadic structure
-
SansSouciSim()
- Create an object of class 'SansSouci' from simulations
-
nHyp(<SansSouciStruct>)
nLeaves(<SansSouciStruct>)
label(<SansSouciStruct>)
pValues(<SansSouciStruct>)
- Basic methods for class
SansSouciStruct
-
SansSouciStruct()
- Create an object of class 'SansSouciStruct'
-
V.star()
- Post hoc bound on the number of false positives
-
nHyp()
nObs()
label()
pValues()
foldChanges()
thresholds()
nLeaves()
- Generic functions for S3 class SansSouci
-
calibrate()
calibrate0()
- Perform JER calibration from randomization p-values
-
confCurveFromFam()
- Confidence bounds on the true/false positives among most significant items
-
curve.V.star.forest.naive()
curve.V.star.forest.fast()
- Compute a curve of post hoc bounds based on a reference family with forest structure
-
curveMaxFP()
- Upper bound for the number of false discoveries among most significant items
-
curveMaxFP_BNR2014()
curveMaxFP_Mein2006()
- Upper bound for the number of false discoveries among most significant items
-
delete.gaps()
- Delete the gaps induced by pruning
-
dyadic.from.leaf_list()
dyadic.from.window.size()
dyadic.from.height()
- Create a complete dyadic tree structure
-
fit(<SansSouci>)
- Fit SansSouci object
-
fit(<SansSouciStruct>)
- Fit SansSouciStruct object
-
forest.completion()
- Complete a forest structure
-
formatBounds()
- Table of bounds
-
gauss_bloc()
- Generate a block of deterministic signal of Gaussian shape
-
gaussianSamples()
- Simulate equi-correlated data
-
gaussianTestStatistics()
- Simulate Gaussian test statistics
-
gen.mu.leaves()
- Generate the signal in the leaves of the tree
-
gen.mu.noleaves()
- Generate an unstructured signal
-
gen.p.values()
- Generate one-sided p-values associated to a given signal with equi-correlated noise
-
get_perm()
- Get permutation statistics and p-values
-
get_pivotal_stat()
- Get a vector of pivotal statistics associated to permutation p-values and to a reference family
-
maxFDP()
- Upper bound for the false discovery proportion in a selection
-
maxFP()
- Upper bound for the number of false discoveries in a selection
-
minTDP()
- Lower bound for the true discovery proportion in a selection
-
minTP()
- Lower bound for the number of true discoveries in a selection
-
nb.elements()
- Number of unique regions in a reference family with forest structure
-
plot(<SansSouci>)
- Plot confidence bound on the true/false positives among most significant items
-
plotConfCurve()
- Plot confidence bound
-
posthocBySimes0Rcpp()
posthocBySimes()
- post hoc bound obtained from Simes' inequality
-
predict(<SansSouci>)
- Post hoc confidence bounds on the true/false positives
-
pruning()
- Prune a forest structure to speed up computations
-
t_inv_linear()
t_linear()
t_inv_beta()
t_beta()
- Reference families
-
rowBinomialTests()
- Binomial proportion tests for each row of a matrix
-
rowPearsonCorrelationTests()
- Pearson's correlation test for rows of a matrix
-
rowWelchTests()
- Welch T-tests for rows of a matrix
-
rowWilcoxonTests()
- Wilcoxon rank sum tests for each row of a matrix
-
rowZTests()
- Z tests for rows of a matrix
-
testByRandomization()
- Randomization-based testing
-
volcanoPlot()
- Volcano plot
-
volcanoPlot(<numeric>)
- Volcano plot
-
zeta.HB()
zeta.trivial()
zeta.DKWM()
- Estimate the number of true null hypotheses among a set of p-values
-
zetas.tree()
- Estimate of the proportion of true nulls in each node of a tree