Pearson's correlation test for rows of a matrix
Source:R/rowPearsonCorrelationTests.R
      rowPearsonCorrelationTests.RdPearson's correlation test for rows of a matrix
Arguments
- X
 A
m x nnumeric matrix whose rows correspond to variables and columns to observations- categ
 Either a numeric vector of continuous covariate for the observations
- alternative
 A character string specifying the alternative hypothesis. Must be one of "two.sided" (default), "greater" or "less". As in
t.test, alternative = "greater" is the alternative that class 1 has a larger mean than class 0.
Value
A list containing the following components:
- statistic
 the value of the t-statistics
- parameter
 the degrees of freedom for the t-statistics
- p.value
 the p-values for the tests
- estimate
 the correlation
Each of these elements is a matrix of size m x B, coerced to a vector of length m if B=1
Details
This function is a wrapper around the row_cor_pearson function in the 'matrixTests' package.
Examples
m <- 300
n <- 38
mat <- matrix(rnorm(m*n), ncol=n)
categ <- rnorm(n, mean = 10)
system.time(fwt <- rowPearsonCorrelationTests(mat, categ, alternative = "greater"))
#>    user  system elapsed 
#>   0.003   0.000   0.003 
str(fwt)
#> List of 3
#>  $ p.value  : num [1:300] 0.3935 0.9307 0.5571 0.8579 0.0335 ...
#>  $ statistic: num [1:300] 0.272 -1.515 -0.145 -1.087 1.889 ...
#>  $ estimate : num [1:300] 0.0453 -0.2448 -0.0241 -0.1783 0.3002 ...