Estimate the number of true null hypotheses among a set of p-values
Source:R/tree-functions.R
zeta.Rd
An upper bound on the number of true null hypotheses in the region associated to
the \(p\)-values pval
is computed with confidence 1 - lambda
.
The functions described here can be used as the method
argument
of zetas.tree()
.
Arguments
- pval
A vector of \(p\)-values
- lambda
A numeric value in \([0,1]\), the target error level of the test
Value
The number of true nulls is over-estimated as follows:
zeta.DKWM
Inversion of the Dvoretzky-Kiefer-Wolfowitz-Massart inequality (related to the Storey estimator of the proportion of true nulls) with parameter
lambda
zeta.HB
Number of conserved hypotheses of the Holm-Bonferroni procedure with parameter
lambda
zeta.trivial
The size of the p-value set which is the trivial upper bound (\(lambda\) is not used)
References
Durand, G., Blanchard, G., Neuvial, P., & Roquain, E. (2020). Post hoc false positive control for structured hypotheses. Scandinavian Journal of Statistics, 47(4), 1114-1148.
Dvoretzky, A., Kiefer, J., and Wolfowitz, J. (1956). Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator. The Annals of Mathematical Statistics, pages 642-669.
Holm, S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979), pp. 65-70.
Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The Annals of Probability, pages 1269-1283.
Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3):479-498.