post hoc bound obtained from Simes' inequality
Source:R/RcppExports.R
, R/posthocBySimes.R
posthocBySimes.Rd
Lower bound on the number of correct rejections using Simes' reference family
Usage
posthocBySimes0Rcpp(p, select, alpha)
posthocBySimes(p, select, alpha, Rcpp = FALSE, verbose = FALSE)
Arguments
- p
A numeric vector of
m
p-values for all tested hypotheses.- select
A vector of indices in \([1, \dots m]\) of the hypotheses to be selected.
- alpha
A numeric value, the significance level of the test procedure.
- Rcpp
A boolean value: use Rcpp version of the implementation? Defaults to FALSE.
- verbose
If
TRUE
, prints verbose result to the screen. Defaults toFALSE
.
Value
A integer value, Simes's lower bound on the number of correct rejections within the selected hypotheses
Details
If (R_k)_k provides jFWER control at level \(\alpha\) then with probability greater than \(1-\alpha\), \(|H_0 cap R| \leq \min_k {|R \cap (R_k)^c|+k-1}\) A bit better: \(|H_0 cap R| \leq (\min_{k<= |R|} {|R \cap R_k^c|+k-1}) \wedge |R|\)
References
Blanchard, G., Neuvial, P., & Roquain, E. (2020). Post hoc confidence bounds on false positives using reference families. Annals of Statistics, 48(3), 1281-1303.
Goeman, J. J., & Solari, A. (2011). Multiple testing for exploratory research. Statistical Science, 26(4), 584-597.
Examples
m <- 1e3
m1 <- 200
p <- 1-pnorm(c(rnorm(m1, mean=4), rnorm(m-m1, mean=0)))
R <- union(1:10, sample(m, 10))
alpha <- 0.10
if (require("cherry")) {
hom <- hommelFast(p)
pickSimes(hom, R, silent=TRUE, alpha = alpha)
}
#> Loading required package: cherry
#> [1] 7
posthocBySimes(p, R, alpha=alpha)
#> [1] 7